313 research outputs found

    Hepatic Proprotein Convertases Modulate HDL Metabolism

    Get PDF
    SummaryThe risk of atherosclerosis is inversely associated with plasma levels of high-density lipoprotein cholesterol (HDL-C). However, HDL metabolism is incompletely understood, and there are few effective approaches to modulate HDL-C levels. Here we show that inhibition in the liver of the classical proprotein convertases (PCs), but not the atypical PCs S1P and PCSK9, decreases plasma HDL-C levels. This metabolic effect of hepatic PCs is critically dependent on expression of endothelial lipase (EL), an enzyme that directly hydrolyzes HDL phospholipids and promotes its catabolism. Hepatic PCs reduce EL function through direct inactivating cleavage of EL as well as through activating cleavage of angiopoietin-like protein 3 (ANGPTL3), an endogenous inhibitor of EL. Thus, inhibition of hepatic PCs results in increased EL activity, leading to reduced HDL-C as well as impaired reverse cholesterol transport. The hepatic PC–ANGPTL3–EL–HDL pathway is therefore a novel mechanism controlling HDL metabolism and cholesterol homeostasis

    An evaluation of the metabolic syndrome in a large multi-ethnic study: the Family Blood Pressure Program

    Get PDF
    BACKGROUND: The Family Blood Pressure Program is an ongoing, NHLBI-sponsored, multi-center program to study the genetic determinants of high blood pressure. The goal of this particular study was to study patterns of metabolic syndrome (MetS) in four ethnic groups: African Americans, Caucasians, Hispanics, and Asians. METHODS: A major part of participants in three networks GENOA, HyperGEN and SAPPHIRe were recruited mainly through hypertensive probands. MetS was defined as a categorical trait following the National Cholesterol Education Program definition (c-MetS). MetS was also characterized quantitatively through multivariate factor analyses (FA) of 10 risk variables (q-MetS). Logistic regression and frequency tables were used for studying associations among traits. RESULTS: Using the NCEP definition, the Hispanic sample, which by design was enriched for type 2 diabetes (T2D), had a very high prevalence of MetS (73%). In contrast, its prevalence in Chinese was the lowest (17%). In African Americans and Hispanics, c-MetS was more prevalent in women than in men. Association of c-MetS with type 2 diabetes (T2D) was prominent in the Hispanics and African Americans, less pronounced in the Whites and Japanese, (although still significant), and weakest in the Chinese sample. Using FA without rotation, we found that the main factor loaded obesity (OBS) and blood pressure (BP) in African Americans; OBS and insulin (INS) in Hispanics, in Japanese, and in Whites; and OBS alone in Chinese. In Hispanics, Whites, and Japanese, BP loaded as a separate factor. Lipids in combination with INS also loaded in a separate factor. Using FA with Varimax rotation, 4 independent factors were identified: "Obesity-INS," "Blood pressure," "Lipids-INS," and "Central obesity." They explained about 60% of the variance present in the original risk variables. CONCLUSION: MetS ethnic differences were identified. Ascertaining for hypertension or T2D increased the MetS prevalence in networks compared with the one in the US general population. Obesity was the most prominent risk factor contributing to both c-MetS and q-MetS. INS contributed in two important factors (obesity and lipids). The information imbedded into c-MetS trait /q-MetS factors scores can contribute in future research of the MetS, especially its utilization in the genetic analysis

    Metabolic Syndrome and Early-Onset Coronary Artery Disease Is the Whole Greater Than Its Parts?

    Get PDF
    ObjectivesWe sought to examine the association between the metabolic syndrome (MetS) (defined both by the 2001 National Cholesterol Educational Program Adult Treatment Panel III [ATP-III] definition and the American Heart Association/National Heart, Lung and Blood Institute [AHA/NHLBI] revision incorporating the lower threshold for impaired fasting glucose [IFG]) and early-onset coronary artery disease (CAD).BackgroundThe impact of MetS on premature CAD has not been studied extensively. Lowering the threshold to define the IFG component (from 110 to 100 mg/dl) and the value of the syndrome as a whole versus its individual components are subjects of intense debate.MethodsWe performed a case-control study with 393 early-onset CAD subjects (acute myocardial infarction, angina with ≥50% stenosis, or coronary revascularization) in men under age 46 years or women under age 56 years and 393 control subjects individually matched for gender, age, and race/ethnicity.ResultsBy conditional logistic regression, presence of ATP-III MetS without diabetes (adjusted odds ratio [adj-OR] 4.9; 95% confidence interval [CI] 3.4 to 8.0) and with diabetes (adj-OR 8.0, 95% CI 4.39 to 14.6) was a strong independent determinant of early-onset CAD. Using the AHA/NHLBI revision, these ORs became slightly stronger. However, neither definition of MetS remained significantly associated with early-onset CAD in multivariate models adjusting for individual components.ConclusionsThe presence of MetS imparts a high risk of early-onset clinical CAD, but the prognostic information associated with the syndrome is not greater than the sum of its parts

    Pathological Ace2-to-Ace enzyme switch in the stressed heart is transcriptionally controlled by the endothelial Brg1–FoxM1 complex

    Get PDF
    Genes encoding angiotensin-converting enzymes (Ace and Ace2) are essential for heart function regulation. Cardiac stress enhances Ace, but suppresses Ace2, expression in the heart, leading to a net production of angiotensin II that promotes cardiac hypertrophy and fibrosis. The regulatory mechanism that underlies the Ace2-to-Ace pathological switch, however, is unknown. Here we report that the Brahma-related gene-1 (Brg1) chromatin remodeler and forkhead box M1 (FoxM1) transcription factor cooperate within cardiac (coronary) endothelial cells of pathologically stressed hearts to trigger the Ace2-to-Ace enzyme switch, angiotensin I-to-II conversion, and cardiac hypertrophy. In mice, cardiac stress activates the expression of Brg1 and FoxM1 in endothelial cells. Once activated, Brg1 and FoxM1 form a protein complex on Ace and Ace2 promoters to concurrently activate Ace and repress Ace2, tipping the balance to Ace2 expression with enhanced angiotensin II production, leading to cardiac hypertrophy and fibrosis. Disruption of endothelial Brg1 or FoxM1 or chemical inhibition of FoxM1 abolishes the stress-induced Ace2-to-Ace switch and protects the heart from pathological hypertrophy. In human hypertrophic hearts, BRG1 and FOXM1 expression is also activated in endothelial cells; their expression levels correlate strongly with the ACE/ACE2 ratio, suggesting a conserved mechanism. Our studies demonstrate a molecular interaction of Brg1 and FoxM1 and an endothelial mechanism of modulating Ace/Ace2 ratio for heart failure therapy

    Epicardial calcineurin-NFAT signals through Smad2 to direct coronary smooth muscle cell and arterial wall development

    Get PDF
    AIMS: Congenital coronary artery anomalies produce serious events that include syncope, arrhythmias, myocardial infarction, or sudden death. Studying the mechanism of coronary development will contribute to the understanding of the disease and help design new diagnostic or therapeutic strategies. Here, we characterized a new calcineurin-NFAT signalling which specifically functions in the epicardium to regulate the development of smooth muscle wall of the coronary arteries. METHODS AND RESULTS: Using tissue-specific gene deletion, we found that calcineurin-NFAT signals in the embryonic epicardium to direct coronary smooth muscle cell development. The smooth muscle wall of coronary arteries fails to mature in mice with epicardial deletion of calcineurin B1 (Cnb1), and accordingly these mutant mice develop cardiac dysfunction with reduced exercise capacity. Inhibition of calcineurin at various developmental windows shows that calcineurin-NFAT signals within a narrow time window at embryonic Day 12.5-13.5 to regulate coronary smooth muscle cell development. Within the epicardium, NFAT transcriptionally activates the expression of Smad2, whose gene product is critical for transducing transforming growth factor β (TGFβ)-Alk5 signalling to control coronary development. CONCLUSION: Our findings demonstrate new spatiotemporal and molecular actions of calcineurin-NFAT that dictate coronary arterial wall development and a new mechanism by which calcineurin-NFAT integrates with TGFβ signalling during embryonic development

    Peroxisome Proliferator-Activated Receptor Gamma Polymorphisms and Coronary Heart Disease

    Get PDF
    Single nucleotide polymorphisms (SNPs) in the peroxisome proliferator-activated receptor γ (PPARG) gene have been associated with cardiovascular risk factors, particularly obesity and diabetes. We assessed the relationship between 4 PPARG SNPs (C-681G, C-689T, Pro12Ala, and C1431T) and coronary heart disease (CHD) in the PRIME (249 cases/494 controls, only men) and ADVANCE (1,076 cases/805 controls, men or women) studies. In PRIME, homozygote individuals for the minor allele of the PPARG C-689T, Pro12Ala, and C1431T SNPs tended to have a higher risk of CHD than homozygote individuals for the frequent allele (adjusted OR [95% CI] = 3.43 [0.96–12.27], P = .058, 3.41 [0.95–12.22], P = .060 and 5.10 [0.99–26.37], P = .050, resp.). No such association could be detected in ADVANCE. Haplotype distributions were similar in cases and control in both studies. A meta-analysis on the Pro12Ala SNP, based on our data and 11 other published association studies (6,898 CHD cases/11,287 controls), revealed that there was no evidence for a significant association under the dominant model (OR = 0.99 [0.92–1.07], P = .82). However, there was a borderline association under the recessive model (OR = 1.29 [0.99–1.67], P = .06) that became significant when considering men only (OR = 1.73 [1.20–2.48], P = .003). In conclusion, the PPARG Ala12Ala genotype might be associated with a higher CHD risk in men but further confirmation studies are needed

    Nat1 Deficiency Is Associated with Mitochondrial Dysfunction and Exercise Intolerance in Mice

    Get PDF
    SummaryWe recently identified human N-acetyltransferase 2 (NAT2) as an insulin resistance (IR) gene. Here, we examine the cellular mechanism linking NAT2 to IR and find that Nat1 (mouse ortholog of NAT2) is co-regulated with key mitochondrial genes. RNAi-mediated silencing of Nat1 led to mitochondrial dysfunction characterized by increased intracellular reactive oxygen species and mitochondrial fragmentation as well as decreased mitochondrial membrane potential, biogenesis, mass, cellular respiration, and ATP generation. These effects were consistent in 3T3-L1 adipocytes, C2C12 myoblasts, and in tissues from Nat1-deficient mice, including white adipose tissue, heart, and skeletal muscle. Nat1-deficient mice had changes in plasma metabolites and lipids consistent with a decreased ability to utilize fats for energy and a decrease in basal metabolic rate and exercise capacity without altered thermogenesis. Collectively, our results suggest that Nat1 deficiency results in mitochondrial dysfunction, which may constitute a mechanistic link between this gene and IR
    corecore